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Summary

To make good decisions, we evaluate past choices to guide
later decisions. In most situations, we have the opportunity

to simultaneously learn about both the consequences of
our choice (i.e., operantly) and the stimuli associated with

correct or incorrect choices (i.e., classically) [1]. Interest-
ingly, in many species, including humans, these learning

processes occasionally lead to irrational decisions [2]. An
extreme case is the habitual drug user consistently adminis-

tering the drug despite the negative consequences, but we
all have experience with our own, less severe habits. The

standard animal model employs a combination of operant
and classical learning components to bring about habit

formation in rodents [3, 4]. After extended training, these
animals will press a lever even if the outcome associated

with lever-pressing is no longer desired [5]. In this study,
experiments with wild-type and transgenic flies revealed

that a prominent insect neuropil, the mushroom bodies
(MBs), regulates habit formation in flies by inhibiting the

operant learning system when a predictive stimulus is
present. This inhibition enables generalization of the clas-

sical memory and prevents premature habit formation.

Extended training in wild-type flies produced a phenocopy
of MB-impaired flies, such that generalization was abolished

and goal-directed actions were transformed into habitual
responses.

Results

A tethered fruit fly, Drosophila, in the absence of sensory
information, continuously changes its choice of flight direc-
tion [6]. Much as humans learn about the consequences of
their actions, the fly’s choices can be modulated by learning
about the consequences of such decisions as when and
where to turn (i.e., operant learning [7]). Procedurally, the task
is not significantly altered by adding predictive stimuli to this
task such that one (e.g., blue coloration of the environment)
indicates which turning maneuvers (e.g., left turning) are pun-
ished with heat and the other (e.g., green coloration) indicates
which decisions (e.g., right turning) are not punished; the
decisions are still followed by the same consequences. How-
ever, this helpful indication of correct and incorrect choices
drastically alters the biological processes underlying the
task. Without the help of the colors, the flies require protein
kinase C function, but not the rutabaga-encoded type I ad-
enylyl cyclase, to learn to make the correct choice; with the
colors, the results are reversed [1]. In order to further investi-
gate this dominant effect of the classical colors on operant
learning, wild-type and transgenic flies were first trained
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in situations with both operant and classical components
present and were then tested for each component individually
(Figure 1).

Given the dominance of the colors in this paradigm, it may not
come as a surprise that in a test without heat, after 8 min of such
composite training, wild-type flies did not reveal any preference
for left- or right-turning maneuvers if the helpful color filters
were removed (Figure 2A; i.e., the isolated operant component,
situation 2 in Figure 1). Apparently, the colors inhibit operant
learning. Why would the flies not learn an important predictor
of punishment such as their own behavior? One hypothesis is
that operant learning might lead to behavioral modifications,
which in turn could potentially interfere with generalization of
the classical color memory. Sensorimotor learning interfering
with behavioral flexibility (‘‘habit interference’’) is a well-known
phenomenon [8], and the balance between interference and
transfer/generalization is a popular research topic [9]. We
tested for the generalization of the classical memory by
measuring color preference in a situation where straight flight
(as opposed to constant turning) was required to reliably avoid
the previously punished color (i.e., situation 3 in Figure 1, previ-
ously described in [10]; see Supplemental Experimental Proce-
dures available online for details). After 8 min of composite
training, wild-type flies successfully avoided the punished color
via this orthogonal behavior (Figure 2A), after a brief reminder
training [10]. A commonly used experimental procedure to
induce sensorimotor learning in other animals is overtraining
[3, 4, 8]. According to the hypothesis above that learning of
the operant behavior in flies may be analogous to sensorimotor
learning leading to habit formation in mammals, extended
training in flies should overcome the inhibition of operant
learning and lead to a failure to generalize the isolated classical
memory to the novel behavior. Consistent with this hypothesis,
flies that were trained with equivalent operant and classical
predictors for twice the regular amount of time showed signifi-
cant performance indexes (PIs) in the control and in the operant
test and no significant score in the generalization test (Fig-
ure 2B). Observing the behavior of the flies, it was noticeable
that, after extended training, some flies seemed to generate
larger turning maneuvers toward the previously unpunished
direction, compared with more symmetrical maneuvers from
flies exposed to the regular amount of training (Figure 2C). A
quantitative evaluation of the behavioral data tended to confirm
the qualitative observations, but the number of animals was
too low to reach statistical significance (data not shown). Taken
together, these results indicate that adjusting to the novel situ-
ation after extended composite training is difficult enough to
disrupt performance in the generalization task (habit interfer-
ence). Similar to a rodent pressing a lever for an aversive stim-
ulus [2–4], the fly, also only after extended training, keeps
generating behaviors that interfere with avoiding the previously
punished color.

In order to elucidate the neuronal substrates mediating
these processes, specific neuronal ensembles in the fly’s brain
were silenced. Because previous evidence pointed toward the
MBs being involved in specific generalization processes
[11–14], this neuropil was targeted with the UAS-GAL4 system
to block synaptic output by expressing the bacterial tetanus
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Figure 1. Experimental Design

During training, heat is used to simultaneously condition flies both to avoid turning to one direction (right or left; operant component) and one of two colors

(blue or green, classical component). In a subsequent test without heat, the flies’ spontaneous preference is recorded. One group of flies is tested in the

same situation as during training (1). A second group of flies is tested for the operant component in isolation by removing the classical component (2). A

third group of flies is tested for the classical component by replacing the operant behavior controlling the colors with a novel behavior (see Supplemental

Experimental Procedures and [27] for details). The red (operant + classical), green (operant component) and blue (classical component) color scheme

applies to all subsequent figures.
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toxin light chain [15]. The first P[GAL4] driver line was MB247,
because this line has already seen widespread use as an MB-
specific driver line [11–14]. MB247 drives expression in about
1600 of the w2000 Kenyon cells in all parts of the MB, except
the prime lobes, and in some neurons of the central complex
[16, 17]. The heterozygous control crosses of driver and
effector strains with Canton S wild-type strains reproduced
wild-type behavior (Figure 3A). Flies with impaired MB function
can learn both the colors and how to modulate their turning
movements [12, 18]. Confirming these previous results, flies
with tetanus toxin expression driven by line MB247 could
master the composite learning task composed of these two
predictors (Figure 3B, situation 1). However, in a phenocopy
of the wild-type flies after extended training, flies with such
blocked MB output did not generalize the classical memory
to a novel behavior and showed significant operant learning
already after the regular 8 min of training (Figure 3B, situations
3 and 2, respectively). Thus, with such manipulated MB func-
tion, flies appear to form habits prematurely.
Flies in which the P[GAL4] line c205 drives expression of
a constitutively active G-Protein are defective in visual pattern
discrimination learning [19]. Constitutive expression of tetanus
toxin in the F5 neurons in the fan-shaped body of the central
complex via the line c205 confirmed that the effects of tetanus
toxin expression were specific to the MB: in contrast to the
MB247 flies, these flies behaved similarly to wild-type and
genetic control flies (Figure 3C). In order to investigate which
of the MB lobes are responsible for the inhibition of operant
learning in such composite situations, transgenic flies with
the P[GAL4] driver line 17D, which drives toxin expression
mainly in the MB a and b lobes (core and surface) but not in
the g lobes [11, 16], were subjected to the same procedure.
These flies show the same pattern of PIs as the MB247 flies:
significant PIs in the control and in the purely operant test
and no significant score in the generalization test (Figure 3D),
conclusively tying the inhibition of the operant component to
MB neurons. Moreover, we can tentatively conclude that the
MB g lobes are probably not involved in this process.
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Figure 2. The Hierarchical Interaction between Operant and

Classical Learning Systems Is Brought about by an Inhibition

of Operant Learning

(A) Standard 8 min training in wild-type (WT) flies. Whereas

there is significant composite learning (red: t31 = 5.1, p <

0.001), the score for the isolated operant component does

not reach significance (green: t24 = 20.3, p < 0.8; not even

after a 60 s reminder training, data not shown). However,

there is significant transfer of the classical color memory to

a novel behavior (blue: t19 = 3.1, p < 0.01) indicates successful

generalization.

(B) Extended 16 min training reverses the scores for the iso-

lated components. The longer training duration does not lead

to an overtraining decrement (t16 = 2.8, p < 0.013). Testing for

the operant component shows a release from the inhibition of

operant learning (t16 = 2.6, p < 0.02). Without inhibition of

the operant system, the flies are unable to generalize (t19 =

0.1, p < 0.91).

(C) Example raw data traces from the generalization test

(situation 3 in Figure 1). Data from two wild-type flies during

the test period depicted in (A) and (B). The red traces depict

the turning maneuvers (yaw torque) used to change flight

direction (blue trace, pattern position) and hence coloration

of the environment (background color of the graph). Upper

traces: fly after 8 min of training to turn right and avoid green

color (pooled data in A). Lower traces: fly after 16 min of

training to turn left and avoid blue color (pooled data in B).

Whereas the fly trained for the regular amount of time shows

symmetrical turning maneuvers, the fly trained for an

extended period of time shows left turning yaw torque spikes

(discrete turning maneuvers) of uniformly larger amplitude

than its right turning yaw torque spikes (traces enlarged in

Figure S1). Numbers at bars: number of animals. *Significant

difference from zero. Error bars are SEM.
Discussion

Spontaneous behavior has clear fitness benefits [6]. However,
spontaneous behavioral variation may reduce efficiency by
introducing mistakes. The success of an animal thus depends
on finding the right balance between efficient exploitation of
known resources through routine behavior and flexible explo-
ration of possible new resources through novel behaviors (the
exploitation-exploration dilemma [20, 21]). In a new situation,
such as the operant paradigm used here, the animal explores
the environment via spontaneous behaviors [6]. It learns about
the stimuli in this environment and how they relate to each other
primarily by engaging the classical learning system [1]. During
this phase, the classical learning system inhibits the operant
system via the MB, preventing direct modification of the
behavior of the animal and keeping the memory flexible
(Figures 2 and 3). After extended periods of time in this situa-
tion, the MB-mediated inhibition is overcome and the behavior
is modified by the operant learning system, which may improve
efficiency but also leads to inflexibility (Figure 2B). The current
data allow establishing a mechanistic model of how operant
and classical learning systems may interact in composite
learning situations and which biological substrates mediate
these processes (Figure 4). In this view, the Rutabaga adenylyl
cyclase-dependent classical learning system inhibits the
protein kinase C-dependent operant learning system via the
MB. The operant learning system facilitates classical learning
via still unknown, non-MB pathways (data not shown and
[10]). This interaction leads to efficient learning, enables
generalization, and prevents premature habit formation. In flies,
it is not yet known whether the two learning systems are also
separable anatomically. It is tempting to speculate that the
interactions between the two learning systems are part of the
mechanism achieving the balance between exploration and
exploitation. In this hypothesis, the MBs provide the checks
and balances to ensure that habits are formed only if their effi-
ciency outweighs their disadvantage of being inflexible.

Such an MB function would be distinct from the one that the
MBs are known to serve in olfactory classical conditioning.
The current consensus is that the memory trace formed during
this kind of learning lies within the MB Kenyon cells [22–24].
This is clearly not the case for visual learning, where the MBs
are not essential [12, 18]. Instead, specific features of the
conditioned stimulus in visual learning appear to reside in
distinct layers of the fan-shaped body of the central complex
[19]. For visual learning, the MBs appear to keep classical
memories flexible for use when the fly’s situation changes. If
the fly’s sensory situation changes, this feature supports
context generalization [11, 12] and protects against sensory
conflict [13, 14]. If the fly’s behavioral situation changes, this
feature supports the form of generalization described here.
From these accumulating recent results, it appears that the
inhibitory function of the MB may be much more pervasive
than previously thought. It is a tantalizing finding for all
Drosophila learning and memory research that overtrained
wild-type flies behave indistinguishably from flies with blocked
MB output: whenever the neural substrate of a learning task is
studied, the question of whether the training regime constitutes
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overtraining must now also be considered. This is reminiscent
of vertebrate experiments, where the dorsal striatum and the
hippocampus are viewed as competing learning systems
with the dorsal striatum involved in skill-learning and the hippo-
campus in fact-learning [4, 25]. Short training is primarily pro-
cessed by the hippocampus, whereas prolonged training
recruits the dorsal striatum. Interestingly, if the prelimbic
medial prefrontal cortex is lesioned in rats, even short training
leads to habit formation [26], reminiscent of the flies with
blocked MB output. To my knowledge, habit formation has
never been shown in any invertebrate model system before.
This discovery entails that models for addiction and other
compulsive disorders can now also be developed in the fly.
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Figure 3. The Mushroom Body a and b Lobes, but Not the g Lobes, Are

Necessary for Inhibition of the Operant Component and Generalization of

Classical Memory

(A) The genetic control flies (the two heterozygote strains did not differ and

were pooled) reproduce the wild-type results: significant composite

learning (t26 = 3.8, p < 0.001), inhibition of the operant component (t31 =

0.7, p < 0.5), and successful generalization of the isolated classical compo-

nent (t14 = 2.7, p < 0.05).

(B) Flies with blocked MB output constitute a phenocopy of the wild-type

flies with extended training, already after 8 min of training. They perform

well in composite learning (red: t19 = 3.1, p < 0.01), but do not inhibit the

operant component during composite training (green: t18 = 2.6, p < 0.05).

Without inhibition of the operant system, these transgenic flies are unable

to generalize the isolated classical component to a novel behavior (blue:

t20 = 20.5, p < 0.6).

(C) Specificity of the MB effects is provided by expressing TNT in the fan-

shaped body. These flies behave as wild-type and control heterozygote flies

with significant composite learning (t11 = 4.3, p < 0.002) and inhibition of the

operant system (t16 = 0.4, p < 0.7), which in turn allows for a successful

generalization of the classical component to a novel behavior (t20 = 2.7,

p < 0.014).

(D) Flies with blocked output only from the a and b lobes of the MB mimic the

flies expressing tetanus toxin in all MB lobes. They perform well in composite

learning (t13 = 4.3, p < 0.001), do not inhibit the operant system (t13 = 3.1, p <

0.01), and do not generalize (t16 = 20.38, p < 0.71). Numbers at bars: number

of animals. *Significant difference from zero. Error bars are SEM.
Combining the tools developed in the approach of localizing
memory traces [17, 19] with the experimental separation of
operant and classical learning components [1], Drosophila
has now entered the stage where we can start to unravel not
only where memories are stored but also how and where basic
neural subsystems interact to accomplish efficient learning
in more ethologically relevant situations, without compromis-
ing generalization or prematurely engaging habit formation.
Research on Drosophila has provided key insights into mech-
anisms of classical learning that are evolutionary conserved.
The utility of this model system has now been extended to
the study of complex learning situations comprising multiple,
interacting learning systems on the behavioral, circuit, and
genetic level. These studies expand a growing body of litera-
ture that simultaneously engaged memory systems can act
both cooperatively and antagonistically.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures and

one figure and can be found with this article online at http://www.cell.

com/current-biology/supplemental/S0960-9822(09)01253-6.
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Figure 4. Hypothetical Model of Composite Learning Consisting of Two

Components with Reciprocal, Hierarchical Interactions

In learning situations where the animal has the possibility to simultaneously

learn about relationships between stimuli in the world and about the conse-

quences of its own behavior, two learning systems can be engaged. One

learning system learns about the world (classical learning system), and

the other system learns to modify behavior (operant learning system). The

AC-dependent classical learning system inhibits PKC-dependent operant

learning via the mushroom bodies (MBs). Operant behavior controlling

predictive stimuli facilitates learning about these stimuli by the classical

learning system via unknown, non-mushroom-body pathways. These inter-

actions lead to efficient learning, generalization and prevent premature

habit-formation. AC, adenylyl cyclase; PKC, protein kinase C.
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16. Aso, Y., Grübel, K., Busch, S., Friedrich, A.B., Siwanowicz, I., and Tani-

moto, H. (2009). The mushroom body of adult Drosophila characterized

by GAL4 drivers. J. Neurogenet. 23, 156–172.

17. Zars, T., Fischer, M., Schulz, R., and Heisenberg, M. (2000). Localization

of a short-term memory in Drosophila. Science 288, 672–675.

18. Wolf, R., Wittig, T., Liu, L., Wustmann, G., Eyding, D., and Heisenberg,

M. (1998). Drosophila mushroom bodies are dispensable for visual,

tactile and motor learning. Learn. Mem. 5, 166–178.

19. Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., Heisenberg, M., and

Liu, L. (2006). Distinct memory traces for two visual features in the

Drosophila brain. Nature 439, 551–556.

20. Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., and Dolan, R.J.

(2006). Cortical substrates for exploratory decisions in humans. Nature

441, 876–879.

21. Cohen, J.D., McClure, S.M., and Yu, A.J. (2007). Should I stay or should I

go? How the human brain manages the trade-off between exploitation

and exploration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 933–942.

22. Gerber, B., Tanimoto, H., and Heisenberg, M. (2004). An engram found?

Evaluating the evidence from fruit flies. Curr. Opin. Neurobiol. 14, 737–

744.

23. Davis, R.L. (2005). Olfactory memory formation in Drosophila: From

molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302.

24. Akalal, D.B., Wilson, C.F., Zong, L., Tanaka, N.K., Ito, K., and Davis, R.L.

(2006). Roles for Drosophila mushroom body neurons in olfactory

learning and memory. Learn. Mem. 13, 659–668.

25. Lee, A.S., Duman, R.S., and Pittenger, C. (2008). A double dissociation

revealing bidirectional competition between striatum and hippocampus

during learning. Proc. Natl. Acad. Sci. USA 105, 17163–17168.
26. Killcross, S., and Coutureau, E. (2003). Coordination of actions and

habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408.

27. Brembs, B. (2008). Operant learning of Drosophila at the torque meter.

J. Vis. Exp. 10.3791/731.



  
 

Current Biology, Volume 19 

Supplemental Data 

Mushroom Bodies Regulate Habit  

Formation in Drosophila 
Björn Brembs 
 
 
 
Supplemental Experimental Procedures 
The method of fly culture and preparation, the apparatus and the main features of the 
experimental design have been published as an open access video publication in order to enhance 
comprehension of these complex procedures [1]. 
 
Fly Strains 
Because of the effects of MB function on context generalization [2, 3], we expressed the 
catalytic subunit of bacterial tetanus toxin (TNT) to block synaptic output from the MB. Despite 
some technical issues which have been raised recently [4, 5], we favored TNT over the 
temperature-sensitive shibire effector, because of the heat punishment in our paradigm. We use 
the trans-heterozygote offspring from the driver (MB247) and the effector strain (UASGAL4-TNT) 
for our studies as described previously [2, 6, 7]. The heterozygote offspring from crossing driver 
and reporter strain, respectively, to Canton-S wild-type flies served as genetic controls for these 
experiments. In addition to the MB247 line we  also used the line 17D which only expresses in 
the α and β lobes, but not in the γ lobes [8]. Any shared effects between the two crosses can 
therefore be attributed to the overlapping expression pattern in the MB between the two driver 
lines. To test for the specificity of the effects in the MB GAL4 lines, we tested a non-MB line, 
c205, which drives TNT expression in the F5 neurons of the fan-shaped body [9]. As both wild-
type Berlin and Canton-S strains behave indistinguishably from each other in learning 
experiments such as those presented here, some wild-type experiments were also performed with 
the Berlin strain (marked WT).  
 
Fly Preparation and Apparatus 
Flies were kept on standard fly medium at 25°C and staged for behavioral experiments [1]. After 
gluing each 24-48h old female fly with head and thorax to a triangle-shaped copper hook, the 
animals were kept individually overnight in small moist chambers with sucrose [1]. During the 
experiment, the torque meter measures a fly's angular momentum around its vertical body axis, 
caused by intended flight maneuvers. The fly is tethered in the center of a cylindrical panorama 
(arena, diameter 58mm), which is homogeneously illuminated from behind (Fig. 1). For green 
and blue illumination of the arena, the light is passed through monochromatic broad band Kodak 
Wratten gelatin filters (#47 and #99, respectively). Filters can be exchanged by a fast solenoid 
within 0.1s. Alternatively, the arena is illuminated throughout the experiment with ‘daylight’ by 
passing it through a blue-green filter (Rosco “surfblue” No. 5433). The transmission spectrum of 
the Rosco filter used in this study constitutes an intermediate between the Kodak blue and green 
filters [10]. Punishment is achieved by applying heat from an adjustable infrared laser (825 nm, 



  
 

150 mW), directed from behind and above onto the fly's head and thorax [1]. The laser beam is 
pulsed (approx. 200ms pulse width at ~4Hz) and its intensity reduced to assure the survival of 
the fly. The experiment is fully automated and computer controlled.  
 
Experimental Design 
Each fly was used only once. The time-course of the experiment was divided into consecutive 
periods of 2 minutes duration. Depending on whether heat may be applied during such a period, 
it is termed a training period (heating possible) or a test period (heat off). Standard experiments 
consisted of two pre-test periods (labeled PI1 and PI2) 4 training periods (PI3, PI4, PI6 and PI7) 
and three memory test periods (PI5, PI8 and PI9). Only in experiments testing the generalization 
of the classical memory, PI8 was a 60s familiarization training and PI9 was scored as memory 
test. For experiments with extended training, the experimental time course was essentially 
repeated such that in total four additional training periods (PI9, PI10, PI12, PI13) followed training-
PI7, as well as five test periods (PI8, PI11, PI14, PI15). Only in experiments testing the 
generalization of the classical memory, PI14 was a 60s familiarization training and PI15 was 
scored as memory test. Depicted are always the PI’s of the first two minutes after the last training 
period. All animals were trained with operant and classical predictors as described before [11, 
12]. In brief, the fly’s spontaneous yaw torque range was divided into a ‘left’ and ‘right‘ domain, 
approximately corresponding to either left or right turns [13]. Heat punishment and arena 
coloration were made contingent on this behavior such that, e.g., left turning lead to green arena 
illumination and heat on, whereas right turning lead to blue arena illumination and heat off. 
Punishment of yaw torque domains/colors was always counterbalanced. For the standard 
duration experiments, this situation lasted until PI7, the final training period. Only in experiments 
with extended training duration was this situation prolonged until PI13. After the final training 
period, the animals were divided into three different groups. The three groups essentially follow 
the three experiments described before [11]. Group 1 (control) was tested in the composite 
situation without heat. Group 2 was tested without heat or colors for spontaneous choice of yaw 
torque domains (operant component). Group 3 was tested only for the color preference using a 
different behavior (classical component). This test with a different behavior was performed as 
described previously [12]. Briefly, the panorama of the fly is replaced with a new arena, 
containing four evenly spaced, identical vertical stripes. Each stripe denotes the center of a 
virtual 90° quadrant. A computer controlled electric motor rotates the arena such that its angular 
velocity is proportional to, but directed against the fly’s yaw torque. The color of the 
illumination of the whole arena is changed whenever one of the virtual quadrant borders passes a 
point in front of the fly. During the 60s familiarization/reminder training, heat punishment is 
made contiguous with the color punished in the previous composite learning phase. During test, 
the heat is permanently switched off. Despite relying on yaw torque as the composite situation, 
this test for the generalization of the classical memory requires the animal to use a different 
motor output than was used during composite training. While during composite training the 
animal had to constantly turn in one direction to keep arena illumination constant, in this flight-
simulator-like situation, the animal has to fly straight to accomplish the same effect. Thus, any 
operant component learned during composite training would interfere with generalization of the 
classical component. 
 
 
 



  
 

Data Evaluation 
The color or yaw torque domain preference of individual flies is calculated as the performance 
index: PI=(ta-tb)/(ta+tb). During training periods, tb indicates the time the fly is exposed to the 
heat and ta the time without heat. During tests, ta and tb refer to the times when the fly chose the 
formerly (or subsequently) unpunished or punished situation, respectively. Thus, a PI of 1 means 
the fly spent the entire period in the situation not associated with heat, whereas a PI of -1 
indicates that the fly spent the entire period in the situation associated with heat. Accordingly, a 
PI of zero indicates that the fly distributed the time evenly between heated and non-heated 
situations. 
 
Statistics 
Individual PIs were tested for significance using a t test for single means against zero, following 
previous studies [2, 3, 9, 10]. All data are expressed as means ± SEM. 
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Figure S1. Expansion of the Example Traces in Figure 2C 
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