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Is there spontaneous behavior?
According to Laplace, randomness is only a measure of our "ignorance of the 
different causes involved in the production of events." Probably the most 
fundamental feature of modern scientific inquiry is the ability to predict future 
events. Reflecting this view, animals are thought to operate according to laws 
firmly tying behavioral 'responses' to environmental variables. Once these laws 
are known, the 'response' of any animal at any time can be predicted from the 
current environmental situation. This basic tenet not only guides basic 
neurobiological and psychological research but has been the foundation for a 
great many robotics applications. Contending that less complex brains would be 
more amenable to this task, the study of invertebrate and in particular fly 
behavior developed into a prominent focus of attention. However, as the double-
slit experiments challenged determinism in physics, a range of behavioral 
experiments challenged behavioral determinism in the neurosciences. If animals 
were but input/output machines which respond to environmental situations in a 
hard-wired, reproducible manner, identical environments should elicit identical 
behavior. However, a number of systems from single neurons and synapses to 
invertebrate and vertebrate animals including humans generate variable output 
despite no variations in input. This variability is often discounted as "noise" (Fig. 
1).
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Fig. 1: Alternative models conceptualizing the open-loop 
experiment. A - According to the robot-hypothesis, there is an 
unambiguous mapping of sensory input to behavioral output. If 
the behavioral output is not constant in a constant 
environment, there are a number of possible sources of noise, 
which would be responsible for the varying output. B - In a 
competing hypothesis, non-constant output is generated 
intrinsically by an initiator of behavioral activity. Note that the 
sources of noise have been omitted in B merely because their 
contribution is judged to be small, compared to that of the 
initiator, not because they are thought to be non-existent.
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Fig. 6: Suggested models for open- and closed-loop 
experiments. A - Open-loop model. The sensorimotor link 
consists of three nonlinear oscillators, two mutually 
inhibiting for left and right torque generation and one 
initiator. All three generators are always active, with initiator 
and incoming sensory data modulating the two torque-
generators. B - Generalized closed-loop model. Performance 
in a situation with a closed reafferent feedback loop is 
commonly modelled with a state estimator (often 
approximated by a Bayesian Kalman filter), cross-correlating 
sensory input with recent motor commands via an efference 
copy (EC). Such an evaluation is required for efficient 
behavioral control of incoming sensory data.
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A. Geometric random inner products

B. Lévy distributions

Fig. 3: Spontaneous behavior is not 
random. A - GRIP analysis of ISIs. Plotted 
are the mean standard deviations from the 
theoretically expected GRIP value for the 
three groups and the random series 
generated by a Poisson process. B - Mean 
values of the Lévy exponent µ in the three 
groups of flies. Higher values indicate a 
lower number of large ISIs and smaller 
values indicate a larger proportion of long 
ISIs.
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Fig. 4: Correlation dimension. A - While the 
correlation dimension converges on a group-specific 
value with increasing embedding dimension for fly-
generated ISIs (openloop, onestripe, uniform), a 
number sequence generated randomly by a Poisson 
process (poisson) diverges. B - Probability to obtain 
the computed correlation dimensions in A by random 
shuffling of the original data. While the poisson 
group exceeds an alpha value of .05, the three fly 
groups stay well below that threshold.
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Fig. 2: Example yaw torque traces. Left column - total traces. Right column - 
enlarged section from minutes 5-10 of the total traces. Red lines delineate enlarged 
sections. Uppermost row is from an animal flying in open loop in a featureless, 
white panorama (openloop). The middle row is from an animal flying in closed loop 
in a panorama with a single black stripe (onestripe). The lower row is from an 
animal flying in closed loop in a uniformly dashed arena (uniform).

Torque spike analysis
We chose the temporal sequence of highly stereotyped flight manoeuvres producing short 
bursts of yaw-torque ('torque spikes'; corresponding to body-saccades in free flight) for 
our analysis (Fig. 2). If the production of torque spikes in a featureless or uniform 
environment were due to random noise in the Drosophila brain or from any 
uncontrollable input, the time intervals between spikes (inter-spike intervals, ISI) should 
reflect this stochasticity. In other words, this situation should represent a natural system 
for generating random numbers. 

Three groups of flies
The first group ('openloop') flew in a completely 
featureless white panorama (i.e., without any 
feedback from the uniform environment - open 
loop), the second group ('onestripe') flew in an 
environment that contained a single black stripe 
in a flight simulator situation that allowed for 
straight flight in optomotor balance (i.e. the fly 
could use its yaw torque to control the angular 
position of the stripe - closed loop) and the third 
group ('uniform') flew in a uniformly textured 
environment that was otherwise free of any 
singularities (i.e., closed loop, the fly could use its 
yaw torque to control the angular position of the 
evenly dashed environment). 

Spontaneous behavior is not simply random
We adapted a recently developed computational method, 
Geometric Random Inner Products (GRIP), to quantify the 
randomness of the ISI sequences. GRIP results from all three 
groups show that flies are relatively poor random number 
generators (Fig. 3a). Analyzing the distribution of ISIs, we 
found that for the openloop and the onestripe groups, the 
duration of ISIs decays according to a non-Gaussian Lévy 
distribution (Fig. 3b).

Spontaneous behavior reveals a fractal order
These results hint at a fractal order rather than random disorder in 
our data, prompting us to continue with time-series analyses. We 
first estimated the fractal dimension of the attractor underlying spike 
production by computing the correlation dimension (Fig. 4a). We 
then calculated the probability that any randomly shuffled sequence 
of our ISI data could have produced the same results. The results 
show clearly that only the recorded sequence of ISIs - and not any 
random shuffling thereof - can be responsible for the computed 
correlation dimensions (Fig. 4b).

A new type of model
The balance between sensorimotor mapping and 
superimposed indeterminacy defines the required 
compromise between unpredictability and 
meaningful behavior to survive in the physical 
world. As much as simple taxis, optomotor 
reflexes and course control require a deterministic 
sensorimotor program, other behaviors require 
fundamental indeterminism. Clearly, entirely 
deterministic behavior will be exploited and would 
leave us helpless in unpredictable situations. Our 
hypothesis predicts that the degree to which an 
animal behaves deterministically is shaped by 
evolution and thus depends on the ecological niche 
to which the animal is adapted. We propose to 
incorporate the structure of indeterminacy into 
models of general brain function and to investigate 
its biological basis.
What would such future models of brain (or robot) 
function look like? We suggest a model centered 
around a core of three nonlinear oscillators 
generating spontaneous yaw-torque fluctuations in 
Drosophila (Fig. 6a). In addition, a feedback-based 
state estimator (Fig. 6b) is required for behavioral 
control in real-world situations. Our data raise the 
suspicion that future models of the brain may have 
to incorporate this or a related component for 
spontaneous behavior initiation, if they strive to be 
biologically realistic.
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Fig. 9: Differences in search 
behavior. The partial 
autocorrelation reveals significant 
differences in the average flight 
components during the search 
phase (blue line) for the SF & VF-
bees compared to the R-bees. SF & 
VF-bees show a strong zigzag-
component in their right and left 
curves. R-Bees use a closer turn.
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Experimental Groups.  Three groups of bees were tested that had the same exploratory memory but 
differed with respect to route memory: (i) bees trained to a distant (200 m) stationary feeder (SF bees) 
have extensive route memory; (ii) bees trained to a variable feeder (VF bees) that circled around the hive 
within a short distance (10 m) lack route memory; and (iii) bees that were recruited (R bees) have 
''secondhand'' route information from observing the recruitment dance (9). SF and VF bees were captured 
at the feeder after sucking to completion and transported in the dark to the release site. R bees were 
captured at the hive entrance after attending a dancing bee that indicated a feeder 200 m to the east. 
Because SF and VF bees were satiated before capture, they were motivated to return to the hive. R bees 
were motivated to search for a new food source but had to fly home quickly because they carried only 
minimal food supply. A total of 285 radar traces were recorded.
The Structure of Full Flight Paths.  Typically, two phases of straight flights, interrupted by one phase 
of curved flights, can be distinguished (see three examples): an initial straight capture-vector flight (red 
line) in the compass direction and over the distance of the hive-to-feeder route the bees were pursuing 
when captured, followed by a curved search flight (blue line) and then by a straight homing flight (green 
line). We evaluated only the blue search flights. For the evaluation, we generated inter-turn-intervals 
(ITIs) for all turns larger than 30°.

Radar tracking of honeybee search flights
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Fig. 7: GRIP and Lévy analysis as in Fig. 3. A - GRIP analysis of ITIs. Plotted 
are the mean standard deviations from the theoretically expected GRIP value 
for the three bee groups. B - Mean values of the Lévy exponent in the three 
groups of bees. Higher values indicate a lower number of large ITIs and 
smaller values indicate a larger proportion of long ITIs.
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Fig. 5: Average nonlinear 
prediction data using the S-map 
method. A-C: Fly data show a 
decay in predictability for 
increasing prediction intervals. D-
F: The control data either show no 
predictability or almost stable 
predictability with increasing 
prediction intervals.
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While the overall predictability of ISI series is low, it is higher 
than the random series and behaves qualitateively like a non-
linear process (inset).
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Testing for nonlinearity
Having excluded a random number generator producing spike series 
reminding of uncorrelated (white) noise, the only possibility that has 
not been ruled out thus far is correlated (colored) noise. The method 
best suited to overcome the problems associated with distinguishing 
linear stochastic processes from nonlinear deterministic ones, is 
nonlinear forecasting (Fig. 5).
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Fig. 8: S-Map procedure on honeybee search flights. 
Similar to the fly data (Fig. 5), the honeybee search 
flights show a low predictability that decays to zero with 
increasing prediction interval. 

Preliminary analysis of honeybee search flights
Encouraged by the fly results, we also started analyzing the 
structure of search flights from radar-tracked honeybees. Running 
the data through a similar set of mathematical tools, we were able to 
detect difference between the three groups, that allow conclusions 
about the search strategies employed by the bees.

Presented at the Neuoscience meeting 2005 in Washington, DC on Tuesday, November 15, 2005.


