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Torque spike analysis
We chose the temporal sequence of highly stereotyped flight manoeuvres producing short 
bursts of yaw-torque ('torque spikes'; corresponding to body-saccades in free flight) for our 
analysis (Fig. 2). If the production of torque spikes in a featureless or uniform environment 
were due to random noise in the Drosophila brain or from any uncontrollable input, the time 
intervals between spikes (inter-spike intervals, ISI) should reflect this stochasticity. In other 
words, this situation should represent a natural system for generating random numbers. 

Three groups of flies
The first group ('openloop') flew in a completely featureless 
white panorama (i.e., without any feedback from the uniform 
environment - open loop), the second group ('onestripe') flew 
in an environment that contained a single black stripe in a 
flight simulator situation that allowed for straight flight in 
optomotor balance (i.e. the fly could use its yaw torque to 
control the angular position of the stripe - closed loop) and the 
third group ('uniform') flew in a uniformly textured 
environment that was otherwise free of any singularities (i.e., 
closed loop, the fly could use its yaw torque to control the 
angular position of the evenly dashed environment). 

Spontaneous behavior is not simply 
random
We adapted a recently developed 
computational method, Geometric 
Random Inner Products (GRIP), to 
quantify the randomness of the ISI 
sequences. GRIP results from all three 
groups show that flies are relatively poor 
random number generators (Fig. 3a). 
Analyzing the distribution of ISIs, we find 
heavy-tailed distributions for all fly groups 
(Fig. 3b). The structure of the data 
follows a power law and the duration of 
the openloop and uniform ISIs decays 
according to a non-Gaussian Lévy 
distribution (Fig. 3c).

Spontaneous behavior reveals a fractal 
order
These results hint at a fractal order rather 
than random disorder in our data, prompting 
us to continue with time-series analyses. We 
first estimated the fractal dimension of the 
attractor underlying spike production by 
computing the correlation dimension (Fig. 
4a). We then calculated the probability that 
any randomly shuffled sequence of our ISI 
data could have produced the same results. 
The results show clearly that only the 
recorded sequence of ISIs - and not any 
random shuffling thereof - can be 
responsible for the computed correlation 
dimensions (Fig. 4b).

Testing for nonlinearity
IThe data now suggest that there may be a dominant nonlinear component in fly ISIs. Nonlinear forecasting comprises a set of 
established methods from nonlinear time series analysis that involve state space reconstruction with lagged coordinate 
embeddings. These methods take advantage of the loss of information in nonlinear time series to distinguish them from 
essentially stochastic (high-dimensional, linear) series. The method of S-maps relies on fitting a series of models (from linear to 
nonlinear) where the degree of nonlinearity is controlled by a local weighting parameter (θ). Improved out-of-sample forecast skill 
with increasingly nonlinear models (larger θ) indicates that the underlying dynamics were themselves nonlinear (Fig. 6).
The existence of nonlinear circuits in nervous systems is 
common knowledge. A critic may argue that any nonlinear 
signature we find in the fly behavior is merely a reflection of this 
already well-known property and not indicative of fine-tuned 
neural control systems. To test this hypothesis, we adapted a 
virtual agent (automat; Fig. 7), consisting of three nonlinear 
generators for comparison with our fly raw data (Fig. 6).

4 automat properties
1. Similar to how a motor command from the brain would 
activate motor patterns in the ventral nerve chord, the 
activator excites the turning oscillators (Fig. 7).
2. The original agent's output has been classified as a 
Lévy walk. 
3. It can be tuned so that its open-loop output shows a 
similar nonlinear structure as fly turning behavior (Fig. 
6a). 
4. It can be adjusted such that its output appears to be 
qualitatively similar to fly open-loop turning behavior 
(Fig. 6b). 

Linear and nonlinear automat output
If the automat output resembles fly behavior, it does 
not reveal a nonlinear signature and if it does show 
the nonlinearity, it doesn't resemble fly behavior (Fig. 
6). Indeed, to reveal its nonlinear signature, the 
automat has to be adjusted such that the nonlinear 
generators operate under unstable conditions. The 
failure of this agent to adequately model fly behavior 
is an example for the rarely appreciated property of 
nonlinear systems to produce linear output under 
equilibrium conditions. Only if the processes operate 
under unstable conditions does the output reveal 
significant nonlinearity. Neural systems are also 
known to be able to produce both linear and nonlinear 
output. This notion is exemplified in the bifurcation 
diagram of the logistic map, the recursive function 
used to generate the three oscillators of the automat 
(Fig. 9).

Behavioral indeterminacy
The abundance of nonlinear processes in the 
brain is per se not a sufficient explanation for 
the nonlinearity we measured in the fly 
behavior. Instead, our results imply that not 
only is the variability in spontaneous fly 
turning behavior not due to neural noise, but 
the nonlinear processes controlling the 
behavior also have to operate at just the right 
parameters to produce instability. Thus, flies 
are not simple input/output machines. Rather, 
our results support the hypothesis that the 
nonlinear processes underlying spontaneous 
behavior initiation have evolved to generate 
behavioral indeterminacy.

Long-range correlations in the behavior 
imply nonlinearity
There are yet more complex composite 
stochastic models which can even exhibit a 
fractal structure. For instance, the so-called 
“branched Poisson process” (BPP, Fig. 5a) can 
produce ISI series which show fractal 
characteristics and cannot be distinguished from 
fly ISIs by shuffling. This implies that specific ISI 
durations are determined in part by the timing of 
other spike(s), and ISI durations fluctuate over 
time rather than relaxing to a homeostatic 
steady state. Such a ‘memory’ can lead to 
long-range correlations in the data. A sensitive 
method to detect such correlations is to calculate 
the root mean square fluctuations in the ISI 
series (Fig. 5b). We found these correlations in 
all fly data, but for BPPs, the presence of 
long-range correlations was dependent on the 
nonlinearity of the filter function. However, the 
value for the BPP with the nonlinear filter 
function is still significantly smaller than the 
value for the openloop group, to which it was 
fitted, ruling out even BPPs with nonlinear filters 
as an appropriate model for spontaneous flight 
behavior in Drosophila.

Start: Is there spontaneous behavior?
The concept of causality is so central to the human thought process that Kant 
concluded it must precede all experience. Science looks for the underlying causes 
of natural phenomena. According to Laplace, randomness is only a measure of 
our "ignorance of the different causes involved in the production of events." The 
neurosciences try to understand the underlying causes for perception, disease, 
aging or development. Reflecting this view, animals are thought to operate 
according to laws firmly tying behavioral 'responses' to environmental variables. 
Once these laws are known, the 'response' of any animal at any time can be 
predicted from the current environmental situation. In this very successful 
approach it is often overlooked that animals are not only responding 
mechanically in a cause and effect (stimulus-response) fashion. Indeed, "even 
under carefully controlled experimental circumstances, an animal will behave as 
it damn well pleases". 
If animals were but input/output machines which respond to environmental 
situations in a reproducible manner, identical environments should elicit identical 
behavior. However, a number of systems from single neurons and synapses to 
invertebrate and vertebrate animals including humans generate variable output 
despite no variations in input. This variability is often discounted as extraneous 
"noise" (Fig. 1). However, our mathematical analyses of behavioral variability 
suggest that the variability is generated endogenously.
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Fig. 1: Alternative models conceptualizing the open-loop 
experiment. A - According to the robot-hypothesis, there is an 
unambiguous mapping of sensory input to behavioral output. If 
the behavioral output is not constant in a constant 
environment, there are a number of possible sources of noise, 
which would be responsible for the varying output. B - In a 
competing hypothesis, non-constant output is generated 
intrinsically by an initiator of behavioral activity. Note that the 
sources of noise have been omitted in B merely because their 
contribution is judged to be small, compared to that of the 
initiator, not because they are thought to be non-existent.

Fig. 2: Example yaw torque traces. Left column - total traces. Right column - 
enlarged section from minutes 5-10 of the total traces. Red lines delineate enlarged 
sections. Uppermost row is from an animal flying in open loop in a featureless, 
white panorama (openloop). The middle row is from an animal flying in closed loop 
in a panorama with a single black stripe (onestripe). The lower row is from an 
animal flying in closed loop in a uniformly dashed arena (uniform).

End: A new type of model
The balance of sensorimotor mapping and superimposed indeterminacy defines 
the required compromise between unpredictability and meaningful behavior to 
survive in the physical world. As much as simple taxis, optomotor reflexes or 
course control require a deterministic sensorimotor program, complex 
behaviors such as searching or pursuit/evasion contests require fundamental 
indeterminism. Clearly, entirely deterministic behavior will be exploited and 
would leave us helpless in unpredictable situations. Our hypothesis predicts 
that the degree to which an animal behaves deterministically is shaped by 
evolution and thus depends on the ecological niche to which the animal is 
adapted. We propose to incorporate the structure of indeterminacy into models 
of general brain function and to investigate its biological basis.
What would such future models of brain (or robot) function look like? We 
suggest a model where sensorimotor maps are superimposed by nonlinear 
variability (Fig. 9a). In addition, a feedback-based state estimator (Fig. 9b) is 
required for behavioral control in real-world situations. Our data raise the 
suspicion that future models of the brain may have to incorporate this or a 
related component for spontaneous behavior initiation, if they strive to be 
biologically realistic. At the same time, our results provide a basis for 
speculating about a mechanism for a subjective notion of free will which does 
not require quantum uncertainty or a violation of causality.
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Fig. 6: Nonlinearity implies instability. A - S-Map results. Depicted are the 
averaged results for fly ISIs and raw yaw torque series, together with two 
automat simulations. The fly ISI series shows a slightly improved forecast skill 
with increasingly nonlinear S-map solutions (increasing θ). Fly yaw torque series 
yield both a better overall forecast skill as well as increased nonlinear 
improvement. The automat simulation can be tuned to produce both linear and 
nonlinear output. B - Sample raw yaw torque data traces from a real fly and the 
two versions of the simulated agent depicted in A (automat 1, automat 2).
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Fig. 7: Schematic view of the open loop automat. 
The activator sends excitatory input to both turn 
generators. The turn oscillators inhibit each other. 
The output is the difference signal between the left 
and right turn oscillator. Each oscillator is described 
by a logistic map, and the coupling modulates the 
individual parameters of each map.

Fig. 8: Bifurcation Diagram of the Logistic 
Map. With r<3 the function converges to one 
value. This stability is lost wth increasing r. 
With r between 3 and ~3.45, the population 
oscillates between two values. Increasing r to 
~3.54, the population oscillates between four 
values, then between 8 values, then 16, 32, 
etc. Chaos occurs at r of ~3.57. Slight 
variations in the initial population yield 
dramatically different results over time.

Fig. 9: Suggested models for open- and closed-loop 
experiments. A - Open-loop model as proposed in Fig. 1 (for 
the openloop group). B - Closed-loop model (for the 
onestripe and uniform groups). Performance in a situation 
with a closed reafferent feedback loop is commonly 
modelled with a state estimator (often approximated by a 
Bayesian Kalman filter), cross-correlating sensory input with 
recent motor commands via an efference copy (EC). Such 
an evaluation is required for efficient behavioral control of 
incoming sensory data.
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Fig. 3: Spontaneous behavior is not 
random. A - GRIP analysis of ISIs. Plotted 
are the mean standard deviations from 
the theoretically expected GRIP value for 
the three groups and the random series 
generated by a Poisson process. B - 
Log-linear plots of ISIs. Exponential 
distributions (black lines) cannot be fitted 
to fly ISI series. The excess of long ISIs 
suggests a heavy-tailed distribution. C - 
Log-log plots of ISIs. Straight line fits 
indicate a power law structure of the 
data. The Lévy exponent μ is calculated 

from the inclination of the linear fit. A Lévy distribution is defined as 1<μ<3. Smaller 
values indicate a larger proportion of long ISIs. A Cox Process (cox) reveals a similar 
power-law structure as the flies.
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Fig. 4: Correlation dimension. A - While the 
correlation dimension converges on a group-specific 
value with increasing embedding dimension for 
fly-generated ISIs (openloop, onestripe, uniform), a 
number sequence generated randomly by a Cox 
process (cox) diverges. B - Probability to obtain the 
computed correlation dimensions in A by random 
shuffling of the original data. While the cox group 
exceeds an alpha value of .05, the three fly groups 
stay well below that threshold.
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Fig. 5: Long-range correlations in fly ISIs. A – 
The branching Poisson process (BPP) as an 
example for complex stochastic models. The BPP 
consists of cascading units of filter functions and 
Poisson processes. Each unit’s filter function 
receives the events from the Poisson process 
upstream and drives the rate of the Poisson 
process associated with it. The (unfiltered) 
output of all Poisson processes is combined to 
yield the total output of the model. B - If the 
slope of the log-log plots of the r.m.s. fluctuation  
deviates significantly from 0.5, long-range 
correlations exist in the time series. All three fly 
groups show a significant deviation from 0.5. 
The deviation of branched Poisson processes 
(BPP), however, depends on the nonlinearity of 
the filter function used to drive the Poisson 
processes and is significantly smaller than that 
of fly ISI series. * - significant difference from 
0.5.
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