Extending in vitro conditioning in Aplysia to analyze operant and classical processes in the same preparation

Björn Brembs ${ }^{1}$, Douglas A. Baxter and John H. Byrne
W.M. Keck Center for the Neurobiology of Learning \& Memory, University of Texas-Houston Medical School (http://nba.uth.tmc.edu/homepage/jbyrne/)

Email: bjoern@brembs.net
current address: Institut für Neurobiologie, FU Berlin

IV. Robust conditioning under varying parameters
A. Increased iBMP frequency in all contingently reinforced groups

B. All BMP types are modulated by conditioning

III. One preparation for both operant and classical conditioning

Stimulation and recording regime: large-unit activity in nerves $\mathrm{I} 2 \mathrm{n}, \mathrm{Rn} 1$ and $\mathrm{Bn} 2,1$ are associated with the protraction, closure and retraction respectively, of the radula/odontophore during feeding. Thus, fictive feeding (i.e., BMPs) was monitored by placing silver electrodes on nerves $12 n$ Rn1, and Bn2 1. Electrical stimulation ($4-6 \mathrm{sec}, 10 \mathrm{~Hz}, 0.5-\mathrm{msec}$ pulses, 7 V) of the right En2, which innervates the buccal mass was used to mimic food reward (US). The duration and frequency of the stimulus resembled bursts of activity recorded in vivo from En2 during feeding. 2. Electrical stimulation of AT4 ($2 \mathrm{sec}, 5 \mathrm{~Hz}, 0.5-$ msec pulses) was used to mimic the CS that was used in classical conditioning in vivo and in vitro. The frequency of AT4 stimulation used in the present study was similar to that recorded in vivo in during mechanical stimulation of the tentacles. 3. Tonic stimulation of the ventral branch of buccal nerve Bn2,3 (2Hz, 0.5-msec pulses, 7 V$)$ was used to non-specifically elevate the number of spontaneous

V. Conclusion

outlook:

