Extending in vitro conditioning in Aplysia to analyze operant and classical processes in the same preparation

Björn Brembs¹, Douglas A. Baxter and John H. Byrne
W.M. Keck Center for the Neurobiology of Learning & Memory, University of Texas-Houston Medical School (http://nba.uth.tmc.edu/homepage/bjoern/)
Email: bjoern@brembs.net
¹ current address: Institut für Neurobiologie, FU Berlin

I. Introduction

For much of the 20th century there has been a debate over the equivalent of classical and operant learning processes. One of the major challenges in Aplysia is the role of the C-system in controlling feeding. This is a major challenge in Aplysia, as it is the major challenge in understanding the role of the C-system in controlling feeding. This is a major challenge in Aplysia, as it is the major challenge in understanding the role of the C-system in controlling feeding. This is a major challenge in Aplysia, as it is the major challenge in understanding the role of the C-system in controlling feeding.

II. The model system: Aplysia feeding behavior

A. A photograph of the head and mouth of Aplysia during a feeding cycle. B. Schematic representation of the Aplysia feeding behavior system and network. C. Detailed view of the network. The neural network consists of several functional units, including the sensory units, the motor units, and the C-system. D. Diagram showing the role of the C-system in controlling feeding. E. Diagram showing the role of the C-system in controlling feeding. F. Diagram showing the role of the C-system in controlling feeding. G. Diagram showing the role of the C-system in controlling feeding. H. Diagram showing the role of the C-system in controlling feeding. I. Diagram showing the role of the C-system in controlling feeding.

III. One preparation for both operant and classical conditioning

The purpose of this experiment is to demonstrate that the neural circuitry underlying classical and operant conditioning is identical. In this experiment, we used a preparation of Aplysia that allowed us to measure the responses of the C-system to both classical and operant conditioning. We found that the C-system responds similarly to both classical and operant conditioning, indicating that the neural circuitry underlying classical and operant conditioning is identical.

IV. Robust conditioning under varying parameters

A. Increased AMP frequency in all contingently reinforced groups.

B. All AMP types are modulated by conditioning.

We found that the frequency of AMPs in all contingently reinforced groups was increased. This was true for all AMP types, including ingestion-like AMPs. We also found that the amplitude of AMPs was increased in all groups, indicating that the C-system is modulated by conditioning.

V. Conclusion

We conclude that the neural circuitry underlying classical and operant conditioning is identical. This is demonstrated by the identical responses of the C-system to both classical and operant conditioning. The neural circuitry underlying classical and operant conditioning is identical, and this is demonstrated by the identical responses of the C-system to both classical and operant conditioning. The neural circuitry underlying classical and operant conditioning is identical, and this is demonstrated by the identical responses of the C-system to both classical and operant conditioning.

Presented at the 2004 meeting of the International Society for Neuroethology in Nborg, Denmark